Holon Platform Project Reactor
integration Module - Reference
manual

Table of Contents

1. Introduction
1.1. Sources and contributions
2. Obtaining the artifacts
2.1. Using the Platform BOM
3. Reactive Datastore
4. Reactive RestClient
4.1. Obtain a ReactiveRestClient instance
4.2. Configure defaults
4.3. Build and configure a request
4.4. Invoke the request and obtain a response
4.5. Request entity

© 00 00 U1 P b W W DD DN =

4.6. Response type

—
(e}

4.7. Response entity

—_
[

4.8. Specific request invocation methods

—
w

4.9. RestClient API invocation methods reference

—
[0}

4.10. Property and PropertyBox support

—
©

5.ReactiveRest(lient implementation using the Spring WebClient API

Copyright © 2016-2018

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

1. Introduction

The Reactor module provides integration between the Holon Platform core APIs, such as Datastore
and Rest(Client, and the Project Reactor reactive programming model, using the Flux and Mono APIs.

1.1. Sources and contributions

The Holon Platform Reactor module source code is available from the GitHub repository
https://github.com/holon-platform/holon-reactor.

https://github.com/holon-platform/holon-reactor

See the repository README file for information about:

e The source code structure.
* How to build the module artifacts from sources.
* Where to find the code examples.

* How to contribute to the module development.

2. Obtaining the artifacts

The Holon Platform uses Maven for projects build and configuration. All the platform artifacts are
published in the Maven Central Repository, so there is no need to explicitly declare additional
repositories in your project pom file.

At the top of each section of this documentation you will find the Maven coordinates (group id,
artifact id and version) to obtain the artifact(s) as a dependency for your project.

A BOM (Bill Of Materials) pom is provided to import the available dependencies for a specific
version in your projects. The Maven coordinates for the core BOM are the following:

Maven coordinates:

<groupId>com.holon-platform.reactor</groupIld>
<artifactId>holon-reactor-bom</artifactId>
<version>5.2.3</version>

The BOM can be imported in a Maven project in the following way:

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.holon-platform.reactor</groupId>
<artifactId>holon-reactor-bom</artifactId>
<version>5.2.3</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

2.1. Using the Platform BOM

The Holon Platform provides an overall Maven BOM (Bill of Materials) to easily obtain all the
available platform artifacts.

See Obtain the platform artifacts for details.

https://maven.apache.org
index.html#obtain-the-platform-artifacts

3. Reactive Datastore

Maven coordinates:

<groupId>com.holon-platform.reactor</groupIld>
<artifactId>holon-reactor-datastore</artifactId>
<version>5.2.3</version>

The ReactiveDatastore API is the reactive version of the Holon Platform core Datastore API using
the Project Reactor programming model.

The ReactiveDatastore operations provides the same semantic and parameters as the core Datastore
API operations, but use the Project Reactor Mono and Flux types as operation results, dependently on
the result cardinality.

Additionaly, the ReactiveBulkInsert, ReactiveBulkUpdate and ReactiveBulkUpdate bulk operations
handlers are provided to obtain a bulk operation result as a Mono<OperationResult> type.

The ReactiveQuery API can be used to configure and execute queries, and obtain the query results
as Mono and Flux types, according to the query projection cardinality.

Finally, a ReactiveTransaction API is available for reactive Datastores which supports transactions,
to reactively handle the transactions lifecycle.

See the available ReactiveDatastore implementations for more information about reactive
Datastores.

The MongoDB ReactiveDatastore implementation documentation is available form here.

4. Reactive RestClient

Maven coordinates:

<groupId>com.holon-platform.reactor</groupIld>
<artifactId>holon-reactor-http</artifactId>
<version>5.2.3</version>

The ReactiveRestClient API is the reactive version of the Holon Platform core RestClient API using
the Project Reactor programming model.

The ReactiveRestClient operations provides the same semantic and parameters as the core
RestClient API operations, but use the Project Reactor Mono and Flux types as operation results,
dependently on the result cardinality.

The ReactivelInvocation API is used to configure and execute HTTP operations using the REST
paradigm, providing the operation results through the Mono and Flux types.

../api/holon-reactor/com/holonplatform/reactor/datastore/ReactiveDatastore.html
holon-core.html#Datastore
https://projectreactor.io
../api/holon-reactor/com/holonplatform/reactor/datastore/operation/ReactiveQuery.html
../api/holon-reactor/com/holonplatform/reactor/datastore/transaction/ReactiveTransaction.html
holon-datastore-mongo.html#Reactor
../api/holon-reactor/com/holonplatform/reactor/http/ReactiveRestClient.html
holon-core.html#RestClient
https://projectreactor.io

4.1. Obtain a ReactiveRest(Client instance

Concrete ReactiveRest(lient implementations are obtained from a ReactiveRestClientFactory,
registered using Java service extensions through a
com.holonplatform.reactor.http.ReactiveRestClientFactory file under the META-INF/services folder.

A ReactiveRest(lient instance can be obtained using one of the create(:--) methods provided by the
interface, either specifying the fully qualified class name of the ReactiveRest(lient implementation
to obtain or using the default implementation according to the available ReactiveRestClientFactory
within the current ClassLoader (a specific ClassLoader can be used instead of the current one).

If more than one RestClienReactiveRestClientFactorytFactory is bound to the same
ReactiveRest(lient implementation type, or if more than one

o ReactiveRestClientFactory is available in the C(lassLoader when the
implementation class is not specified, the ReactiveRest(lientFactory to use to build
the ReactiveRest(Client instance is selected according to the factory priority level,
which can be specified using the Priority annotation, if available.

The forTarget(::+) static methods of the ReactiveRest(lient interface can be used
@ as shorters to create a ReactiveRest(lient using the default implementation and
et setting a default base URI to use for the client requests.

ReactiveRestClient creation examples
ReactiveRestClient client = ReactiveRestClient.create(); @

client = ReactiveRestClient.create(
"com.holonplatform.jaxrs.client.reactor.JaxrsReactiveReactiveRestClient"); @

client = ReactiveRestClient.forTarget("https://host/api"); ®

@ Create a ReactiveRestClient API using the default available implementation for current
ClassLoader

@ Create a ReactiveRestClient API using a specific implementation class name

® Create a ReactiveRestClient API using the default available implementation and setting the
default base URI

Available implementations
The ReactiveRest(lient implementations provided by the Holon Platform are are:

* A JAX-RS based implementation, using a standard JAX-RS (lient to perform invocations,
available from the holon-jaxrs.html#JaxrsReactiveRestClient[Holon platform JAX-RS module];

* A Spring based implementation, using the Spring WebClient API to perform invocations;

4.2. Configure defaults

The ReactiveRest(Client API supports some default configuration attributes, which will be used for

../api/holon-reactor/com/holonplatform/reactor/http/ReactiveRestClientFactory.html

each request performed using a ReactiveRest(Client instance:

* A default target, i.e. the default base URI which will be used for all the requests performed with
the ReactiveRest(lient API, unless overridden using the specific request configuration target
method.

* A set of default headers to be included in all the requests performed with the
ReactiveRestClient APIL

ReactiveRestClient client = ReactiveRestClient.create();
client.defaultTarget(new URI("https://rest.api.example")); @®

client.withDefaultHeader (HttpHeaders.ACCEPT_LANGUAGE, "en-CA"); @
client.withDefaultHeader (HttpHeaders.ACCEPT_CHARSET, "utf-8"); ®

@ Set the default target request base URI, which will be used as target URI for every request
configured using request(), if not overridden using target(URI).

@ Add a default request header which will be automatically added to every invocation request
message

3 Add another default request header

4.3. Build and configure a request

To build a client request, the ReactiveRequestDefinition API is used, which represents both a fluent
builder to configure the request message and a Reactivelnvocation API to perform the actual
invocation and obtain a response.

The request can be configured using the ReactiveInvocation API methods as described below.

Request URI

The request URI can be composed using:

* A request target, i.e. the base URI of the request. If a default request target was configured for
the ReactiveRest(lient instance, it will be overriden by the specific request target.

* One ore more request *path*s, which will be appended to the base request target URI, adding
slash characters to separate them from one another, if necessary.

ReactiveRestClient client = ReactiveRestClient.create();

ReactiveRequestDefinition request = client.request().target(URI.create(
"https://rest.api.example")); @®

request = request.path("apimethod"); @

request = request.path("subpath"); &

@ Set the request target, i.e. the base request URI

@ Set the request path, which will be appended to the base request URI

../api/holon-reactor/com/holonplatform/reactor/http/ReactiveRestClient.ReactiveRequestDefinition.html
../api/holon-reactor/com/holonplatform/reactor/http/ReactiveRestClient.ReactiveInvocation.html

® Append one more path to the request URIL. The actual URI will be: https://rest.api.example/
apimethod/subpath

URI template variable substitution values

The ReactiveRestClient API supports URI template variables substitution through the resolve(::)
method.

IMPORTART: URI templates variables substitution is only supported for the request URI components
specified as path(::-) elements, not for the target(::-) base URI part.

client.request().target("https://rest.api.example").path("/data/{name}/{id}").resolve(
"name"' lltestll)

.resolve("id", 123); ®

Map<String, Object> templates = new HashMap<>(1);
templates.put("id", "testValue");

request = client.request().target("https://rest.api.example").path("/test/{id}")
.resolve(templates); @

@ Subsitute two template variables values

@ Subsitute template variables values using a name-value map
URI query parameters
The ReactiveRestClient API supports URI query parameters specification, with single or multiple

values, through the queryParameter(:--) methods.

client.request().queryParameter("parameter”, "value") @
.queryParameter ("multiValueParameter", 1, 2, 3); @

@ Set a single value query parameter

@ Set a multiple values query parameter

Request headers

HTTP headers can be added to the request using the generic header(String name, String::- values)
method (supporting single or multiple header values) or a set of frequently used headers
convenience setter methods, such as accept, acceptlLanguage (supporting Java Locale types as
arguments) and cacheControl.

(r) The HttpHeaders interface can be used to refer to HTTP header names as
- constants.
G The MediaType enumeration can be used for the Accept header values using the

- accept(MediaType::+ mediaTypes) builder method.

https://rest.api.example/apimethod/subpath
https://rest.api.example/apimethod/subpath
https://rest.api.example/apimethod/subpath
https://rest.api.example/apimethod/subpath
https://rest.api.example/apimethod/subpath
../api/holon-reactor/com/holonplatform/http/HttpHeaders.html
../api/holon-reactor/com/holonplatform/http/MediaType.html

The CacheControl API provides a fluent builder to build and set a Cache-Control
@ header value for the request, using the cacheControl(CacheControl cacheControl)
builder method.

client.request().header("Accept", "text/plain"); @

client.request().header (HttpHeaders.ACCEPT, "text/plain"); @
client.request().accept("text/plain”, "text/xml"); ®
client.request().accept(MediaType.APPLICATION_JSON); @
client.request().acceptEncoding("gzip"); ®

client.request().acceptCharset("utf-8"); ®
client.request().acceptCharset(Charset.forName("utf-8")); @
client.request().acceptLanguage("en-CA"); ®
client.request().acceptlLanguage(Locale.US, Locale.GERMANY); ©
client.request().cacheControl(CacheControl.builder().noCache(true).noStore(true).build

0);

@ Set a request header, providing its name and its value

@ Set a request header, providing its name through the HttpHeaders enumeration and its value
® Set the request Accept header values

@ Set the request Accept header value using the MediaType enumeration

® Set the request Accept-Encoding header value

® Set the request Accept-Charset header value

@ Set the request Accept-Charset header value using the Java Charset class

Set the request Accept-Language header value

@ Set the request Accept-Language header values using the Java Locale class

Build a CacheControl definition and set it as Cache-Control request header value

Authorization headers

The ReactiveRestClient API provides two convenience request builder methods to setup a request
Authorization header using:

* The Basic authorization scheme, providing a username and a password, through the
authorizationBasic(String username, String password) builder method.

* The Bearer authorization scheme, providing a token, through the authorizationBearer(String
bearerToken) builder method.

client.request().authorizationBasic("username", "password"); @
client.request().authorizationBearer("An389fz56xsr7"); @

@ Set the Authorization request header value using the Basic scheme and providing the
credentials. Username and password will be encoded according to the HTTP specifications

@ Set the Authorization request header value using the Bearer scheme and providing the bearer

../api/holon-reactor/com/holonplatform/http/CacheControl.html
https://tools.ietf.org/html/rfc1945#section-11.1

token value. See RFC6750

4.4. Invoke the request and obtain a response

The ReactiveRequestDefinition API can be used to perform the actual invocation and obtain a
response.

The ReactiveRequestDefinition API provides a generic invocation method:

<T, R> Mono<ReactiveResponseEntity<T>> invoke(HttpMethod method, RequestEntity<R>
requestEntity, ResponseType<T> responseType)

This method requires the following parameters:
* The HTTP method to use to perform the request (GET, POST, and so on), specified using the
HttpMethod enumeration.

* An optional request entity, i.e. the request message payload (body), represented through the
RequestEntity APL

* The expected response entity type using the ResponseType class, to declare the Java type of the
response payload and apply a suitable converter, if available, to obtain the HTTP response body
as the expected Java type.

The method returns a Mono of ReactiveResponseEntity type, which can be used to reactively handle
the operation response.

The ReactiveResponseEntity API is a ResponseEntity extension which can be used to:
* Inspect the response message, for example to obtain the HTTP response status code, as a

number or represented through the HttpStatus enumeration.

* Obtain the HTTP response raw payload or get it as a Java object, unmarshalled by a suitable
converter which must be available from the concrete ReactiveRestClient API implementation.

» Obtain the response entity as a Mono or a Flux of the required type.

For non textual request or response payload types, any marshalling/unmarshalling

A strategy and implementation must be provided by the concrete ReactiveRestClient
APIL. See the specific Available implementations documentation for additional
information.

See the next sections for details about the invocation parameters and return types.

4.5. Request entity

The RequestEntity interface can be used to provide a request entity to the ReactiveRestClient API
invocation methods, i.e. the request message payload.

The request entity is represented by a Java object and its serialization format is specified using a
media type declaration (i.e. a MIME type definition) through the Content-Type request header value.

https://tools.ietf.org/html/rfc6750#section-2.1
../api/holon-reactor/com/holonplatform/http/HttpStatus.html
../api/holon-core/com/holonplatform/http/rest/RequestEntity.html

Depending on the ReactiveRestClient API implementation used, you must ensure

o the request media type is supported and a suitable request message body
converter is available to deal with the Java object type and the media type of the
request entity.

The RequestEntity interface provides a set of convenience static methods to build a request entity
instance using the most common media types, such a text/plain, application/json, application/xml
and application/x-www-form-urlencoded (the latter also providing a fluent form data builder
method).

RequestEntity<String> request1 = RequestEntity.text("test"); @
RequestEntity<TestData> request2 = RequestEntity.json(new TestData()); @

RequestEntity request3 = RequestEntity
.form(RequestEntity.formBuilder().set("value1”, "one").set("value2", "a", "b")

.build()); @

@ Build a text/plain type request entity, using test as request entity value

@ Build a application/json type request entity, using a TestData class instance as request entity
value

® Build a application/x-www-form-urlencoded type request entity, using the formBuilder method to
build the form data map

The RequestEntity.EMPTY constant value can be used to provide an empty request entity.

RequestEntity<?> emptyRequest = RequestEntity.EMPTY; @

@ Build an empty request empty, to provide a request message without a payload

4.6. Response type

The ResponseType interface can be used to provide the expected response entity type to the
ReactiveRestClient API invocation methods.

In addition to a simple Java class type, a parametrized type can be declared, allowing to use Java
generic types as response types.

ResponseType<TestData> responseTypel = ResponseType.of(TestData.class); @

ResponseType<List<TestData>> responseType2 = ResponseType.of(TestData.class, List
.class); @

@ Declares a response type as TestData type

@ Declares a response type as a List of TestData types

../api/holon-reactor/com/holonplatform/http/rest/ResponseType.html

4.7. Response entity

The ReactiveResponseEntity interface is used by ReactiveRestClient API to represent the invocation
response and to deal with the response entity obtained as invocation result.

Since it is a HttpResponse instance, the ReactiveRestClient API can be used to inspect the response
message, for example the HTTP message headers, including the HTTP status code.

Mono<ReactiveResponseEntity<TestData>> response = ReactiveRest(lient
.forTarget("https://rest.api.example/testget").request().accept(MediaType
.APPLICATION_JSON)
.get(TestData.class); @

response.doOnSuccess(r -> {
HttpStatus status = r.getStatus(); @
int statusCode = r.getStatusCode(); ®
long contentlLength = r.getContentlLength().orElse(-1L); @
Optional<String> value = r.getHeaderValue("HEADER_NAME"); ®
19K

@ Perform a GET request, setting the Accept header as application/json and declaring the TestData
class as expected response entity Java type

@ Get the response status as HttpStatus enumeration value

® Get the response status code

@ Get the Content-Length header value

® Get a generic header value

To obtain the response entity value as the expected Java type, the asMono() method can be used. The

returned object generic type is provided according to the specified Response type, so the payload
value will be and instance of the expected response Java type.

Furthermore, the ReactiveResponseEntity API makes available the asMono(Class<E> entityType)
method, to obtain the response entity as a different type from the one specified with the Response
type invocation parameter, if the media type is supported by the concrete ReactiveRest(lient API
implementation and a suitable converter is available.

In a similar way, the asFlux(Class<E> entityType) and asInputStream() methods provide the
response entity content as a Flux and as a InputStream respectively.

../api/holon-reactor/com/holonplatform/reactor/http/ReactiveResponseEntity.html

Mono<ReactiveResponseEntity<TestData>> response = ReactiveRest(Client
.forTarget("https://rest.api.example/testget").request().accept(MediaType
.APPLICATION_JSON)
.get(TestData.class); @

response.doOnSuccess(r -> {
Mono<TestData> entity = r.asMono(); @
Mono<String> asString = r.asMono(String.class); ®

b

@ Perform a GET request, setting the Accept header as application/json and declaring the TestData
class as expected response entity Java type

@ Get the response entity Mono value as a TestData type, according to the declared response type

® Get the response entity Mono value as a String

Depending on the concrete ReactiveRestClient API implementation, you must

o ensure the response media type is supported and a suitable message body
converter is available to deal with the Java object type and the media type of the
response entity.

4.8. Specific request invocation methods

In most cases, it is easier and faster to use HTTP method-specific invocation methods, made
available by the ReactiveRestClient invocation API.

Each invocation method is relative to a specific HTTP request method and it is named accordingly.
More than one method version is provided for each HTTP request method, providing the most
suitable parameters and response types for for the most common situations.

For each HTTP request method (apart from the HEAD request method), the ReactiveRestClient API
makes available a set of invocation methods organized as follows:

1. A set of methods to optionally provide a Request entity and to obtain a Response entity. If the
response is expected to contain a payload which has to be deserialized into a Java object, the
Response type can be specified, either as a simple or parametrized Java class.

final ReactiveRestClient client = ReactiveRest(Client.forTarget(
"https://rest.api.example/test");

Mono<ReactiveResponseEntity<TestData>> response = client.request().get(TestData.class
); @

response

client.request().get(ResponseType.of(TestData.class)); @

response = client.request().put(RequestEntity.json(new TestData()), TestData.class);
®

® Perform an invocation using the GET method and obtain a ResponseEntity expecting the TestData

class as response entity type
@ The same invocation using the ResponseType API to specify the expected response entity type

® Perform an invocation using the PUT method and providing an application/json type request
entity, expecting a TestData response entity type

When a response entity is not expected, this category of invocation methods return a Void type
ReactiveResponseEntity.

Mono<ReactiveResponseEntity<Void>> response2 = client.request().post(RequestEntity
.json(new TestData())); @®
response2.doOnSuccess(r -> {

HttpStatus status = r.getStatus(); @

b

@ Perform an invocation using the POST method and providing an application/json type request
entity, but no response entity is expected

@ Get the response HTTP status

2. A set of method to directly obtain the deserialized response entity value, named with the
ForEntity suffix. This methods expects a successful response (i.e. a response with a 2xx HTTP status
code), otherwise an UnsuccessfulResponseException is thrown. The exception which can be inspected
to obtain the response status code and the response itself.

Mono<TestData> value = client.request().getForEntity(TestData.class); @
Mono<List<TestData>> values = client.request().getForEntity(ResponseType.of(TestData
.class, List.class)); @

® Perform an invocation using the GET method and directly obtain the TestData type response
entity value, if available

@ Perform an invocation using the GET method and directly obtain a List of TestData type response

entity values, if available

The UnsuccessfulResponseException type, which is thrown by the xxxForEntity invocation methods
when the response status code do not belongs to the 2xx family, provides some information about
the invocation failure:

* The actual response status code.

» Areference to the actual response entity instance.

../api/holon-reactor/com/holonplatform/http/exceptions/UnsuccessfulResponseException.html

try {
client.request().getForEntity(TestData.class);

} catch (UnsuccessfulResponseException e) {
// got a response with a status code different from 2xx
int httpStatusCode = e.getStatusCode(); @
Optional<HttpStatus> sts = e.getStatus(); @
ResponseEntity<?> theResponse = e.getResponse(); @

@ Get the actual response status code
@ Get the response status code as a HttpStatus

® Get the ResponseEntity instance
3. A set of convenience methods are provided for frequent needs and situations, for example:

* A getForStream method to perform a request using the HTTP GET method and obtain the
response entity as an InputStream. This can be useful, for example, for API invocations which
result is a stream of byte or characters.

Mono<InputStream> responseEntityStream = client.request().getForStream();

* A getAslList method, to perform a request using the HTTP GET method and obtain the response
entity contents as a Flux of deserialized Java objects in a specified expected response type.

Flux<TestData> collectionOfValues = client.request().getAsList(TestData.class);

* A postForLocation to perform a request using the HTTP POST and directly obtain the Location
response header value as a Java URI instance, if available.

Mono<URI> locationHeaderURI = client.request().postForLocation(RequestEntity.json(new
TestData()));

4.9. RestClient API invocation methods reference

Below a reference list of the ReactiveRestClient invocation API, available from the reactive request
definition API:

ReactiveRestClient reactiveRestClient = ReactiveRestClient.forTarget(
"http://api.example"); // Obtain a

// ReactiveRest(Client
ReactiveRequestDefinition request = reactiveRestClient.request(); // Request
definition

Generic invocations:

Operation

invoke

invokeForSuccess

invokeForEntity

invokeForFlux

Description

Invoke the request
and receive a
response back.

Invoke the request
and receive a
response back
only if the
response has a
success (2xx) status
code.

Invoke the request
and receive back
the response
content entity,
already
deserialized in the
expected response

type.

Invoke the request
and receive back a
response content
entity, already
deserialized in a
Flux of the
expected response

type.

By method invocations:

1. GET:

Parameters

1
2.

HTTP method

Optional
RequestEntity
Expected
response
entity type
(Void for none)

HTTP method

Optional
RequestEntity
Expected
response
entity type
(Void for none)

HTTP method

Optional
RequestEntity
Expected
response
entity type

HTTP method

Optional
RequestEntity
Expected
response
entity type

Returns

A NMono of
ReactiveResponseEn

tity type with the
expected response
entity payload

type

A Mono of
ReactiveResponseEn

tity type with the
provided response
entity payload

type

A Mono with the
response entity
value, already
deserialized in the
expected response
entity type

A Flux with the
response entity
values, already
deserialized in the
expected response
entity type

Response status
handling

None

If the response
status code is not

2XX, an
UnsuccessfulRespon

seExceptionis
thrown

If the response
status code is not

2xx, an
UnsuccessfulRespon

seExceptionis
thrown

If the response
status code is not

2xx, an
UnsuccessfulRespon

seExceptionis
thrown

Operation

get

getForEntity

getForStream

getAsList

2. POST:

Operation

post

postForEntity

First parameter

The request entity
represented as
RequestEntity
instance

The request entity
represented as
RequestEntity
instance

Parameters

Expected response
entity type, either using
a(lass<T>ora
ResponseType<T> to
handle generic types

Expected response
entity type, either using
a(lass<T>ora
ResponseType<T> to
handle generic types

None

Expected response
entity type (Class<T>)

Second

Returns

A Mono of
ReactiveResponseEntity

<T> type, with expected
response entity payload

type

A Mono of the response
entity value (T), already
deserialized in the
expected response
entity type

A Mono of the response
payload InputStream

A Flux of the
deserialized response
entities using the
provided response
entity type

Returns

parameter

types

types

a ResponseType<T>
to handle generic

Optional expected A Mono of
response entity
type, either using
a (Class<T>ora
ResponseType<T> to
handle generic

Response status
handling

None

If the response status

code is not 2xx, an
UnsuccessfulResponseEx

ception is thrown

If the response status

code is not 2xx, an
UnsuccessfulResponseEx

ception is thrown

If the response status

code is not 2xx, an
UnsuccessfulResponseEx

ception is thrown

Response status
handling

None

ReactiveResponseEn
tity<T> type, with
expected response
entity payload
type. If the second

parameter is not
specified, a Void

type

ReactiveResponseEn
tity is returned

Expected response A Mono of the
entity type, either
using a (Class<T> or

entity type

response entity
value (1), already
deserialized in the UnsuccessfulRespon

expected response Sebxceptionis

If the response
status code is not
2XX, an

thrown

Operation

postForLocation

3. PUT:

Operation

put

putForEntity

4. PATCH:

Operation

patch

First parameter

Second
parameter

The request entity None

represented as
RequestEntity
instance

First parameter

The request entity
represented as
RequestEntity
instance

The request entity
represented as
RequestEntity
instance

First parameter

The request entity
represented as
RequestEntity
instance

Second
parameter

Optional expected
response entity
type, either using
a (Class<T>ora
ResponseType<T> to
handle generic

types

Expected response
entity type, either
using a Class<T> or
a ResponseType<T>
to handle generic

types

Second
parameter

Optional expected
response entity
type, either using
a (Class<T>ora
ResponseType<T> to
handle generic

types

Returns

A Mono of the
Location response
header value

Returns

A NMono of
ReactiveResponseEn

tity<T> type, with
expected response
entity payload
type. If the second
parameter is not
specified, a Void
type
ReactiveResponseEn
tity is returned

A Mono of the
response entity
value (1), already
deserialized in the
expected response
entity type

Returns

A Mono of
ReactiveResponseEn

tity<T> type, with
expected response
entity payload
type. If the second
parameter is not
specified, a Void
type
ReactiveResponseEn
tity is returned

Response status
handling

If the response
status code is not

2XX, an
UnsuccessfulRespon

seExceptionis
thrown

Response status
handling

None

If the response
status code is not

2XX, an
UnsuccessfulRespon

seExceptionis
thrown

Response status
handling

None

Operation First parameter Second Returns Response status
parameter handling
patchForEntity The request entity Expected response A Mono of the If the response
represented as entity type, either response entity status code is not
RequestEntity using a Class<T> or value (T), already 2xx, an
instance a ResponseType<T> deserialized in the UnsuccessfulRespon
to handle generic expected response SeExceptionis
types entity type thrown
5. DELETE:
Operation Parameter Returns Response status
handling
delete Optional expected A Mono of None
response entity type’ ReaCt'iveRESponseEﬂt'ity
either using a Class<T> <Void>type
or a ResponseType<T> to
handle generic types
deleteOrFail None A Mono of Void type If the response status
code is not 2xx, an
UnsuccessfulResponseEx
ception is thrown
deleteForEntity Expected response A Mono of the response If the response status
entity type, either using entity value (T), already code is not 2xx, an
a(Class<T>ora deserialized in the UnsuccessfulResponseEx
ResponseType<T> to expected response ception is thrown
handle generic types entity type
6. OPTIONS:
Operation Parameter Returns Response status
handling
options Optional expected A Mono of None

response entity type,
either using a Class<T>
or a ResponseType<T> to
handle generic types

ReactiveResponseEntity
<T> type, with expected

response entity payload

type. If the second
parameter is not
specified, a Void type
ReactiveResponseEntity
is returned

Operation Parameter Returns Response status

handling
optionsForEntity Expected response A Mono of the response If the response status
entity type, either using entity value (T), already code is not 2xx, an
a(Class<T>ora deserialized in the UnsuccessfulResponseEx
ResponseType<T> to expected response ception is thrown
handle generic types entity type
7. TRACE:
Operation Parameter Returns Response status
handling
trace Optional expected A Mono of None
response entlty type’ ReaCt'iVERESponSEEnt'ity
either using a Class<T> <> type, with expected
or a ResponseType<T>to response entity payload
handle generic types type. If the second
parameter is not
specified, a Void type
ReactiveResponseEntity
is returned
traceForEntity Expected response A Mono of the response If the response status
entity type, either using entity value (T), already code is not 2xx, an
a(Class<T>ora deserialized in the UnsuccessfulResponseEx
ResponseType<T> to expected response ception is thrown
handle generic types entity type
8. HEAD:
Operation Returns Response status handling
head A Void type ResponseEntity A Mono of
ReactiveResponseEntity<Void>

type

4.10. Property and PropertyBox support

The ReactiveRestClient API fully supports the Holon Platform Property model when used along
with the PropertyBox data type as a request/response entity in RESTful API calls.

Regarding the JSON media type, the PropertyBox type marshalling and unmarshalling support is
provided by the Holon Platform JSON module. For the builtin ReactiveRestClient API
implementations, the PropertyBox type JSON support is automatically setted up when the suitable
Holon platform JSON module artifacts are available in classpath.

When a response entity value has to be deserialized into a PropertyBox object type, the property set
to be used must be specified along with the reponse entity type, in order to instruct the JSON

holon-json.html

module unmarshallers about the property set with which to build the response PropertyBox
instances.

For this purpose, the ReactiveRestClient invocation API propertySet(:::) methods can be used to
specify the property set with which to obtain a PropertyBox type response entity value.

final PathProperty<Integer> CODE = create("code", int.class);
final PathProperty<String> VALUE = create("value", String.class);
final PropertySet<?> PROPERTIES = PropertySet.of(CODE, VALUE);

ReactiveRestClient client = ReactiveRestClient.create();

Mono<PropertyBox> box = client.request().target("https://rest.api.example").path(
"/apimethod")
.propertySet(PROPERTIES).getForEntity(PropertyBox.class); @

Mono<PropertyBox> box2 = client.request().target("https://rest.api.example").path(
"/apimethod")
.propertySet(CODE, VALUE).getForEntity(PropertyBox.class); @

Flux<PropertyBox> boxes = client.request().target("https://rest.api.example").path(
"/apimethod")
.propertySet(PROPERTIES).getAsList(PropertyBox.class); ®

@ GET request for a PropertyBox type Mono response, using PROPERTIES as property set
@ GET request for a PropertyBox type Mono response, using directly an array of properties

® GET request for a Flux of PropertyBox type response, using PROPERTIES as property set

5. ReactiveRest(lient implementation using
the Spring Web(Client API

Maven coordinates:

<groupId>com.holon-platform.reactor</groupIld>
<artifactId>holon-reactor-spring</artifactId>
<version>5.2.3</version>

The holon-reactor-spring artifact provides a Reactive RestClient implementation using the Spring
5+ WebClient APL

The Spring ReactiveRest(lient implementation is represented by the SpringReactiveRestClient
interface, which provides a create(WebClient webClient) method to create a ReactiveRest(lient
instance using a provided Spring WebClient reference.

../api/holon-reactor/com/holonplatform/reactor/spring/SpringReactiveRestClient.html

WebClient webClient = getWebClient(); @

ReactiveRestClient client = SpringReactiveRestClient.create(webClient); @

@ Create or obtain a WebClient implementation

@ Create a ReactiveRestClient using the WebClient implementation

When a Web(Client instance is available as a Holon Platform [Context] resource, a
ReactiveRestClientFactory is automatically registered to provide a SpringReactiveRest(Client
implementation using that WebClient implementation. This way, the default
ReactiveRestClient.create(::r) static methods can be used to obtain a ReactiveRestClient
implementation.

If the Spring context scope is enabled with the default beans lookup strategy, it is
sufficient that a WebClient bean type is registered in the Spring application context
to obtain it as a context resource.

®
class Config {

@
public WebClient webClient() {
return WebClient.create();

}

void restclient() {
ReactiveRestClient client = ReactiveRestClient.create(); ®

client = ReactiveRestClient.create(SpringReactiveRestClient.class.getName()); @
+

@ Use the @EnableBeanContext to enable Spring beans context
@ Provide a WebClient bean definition

® The ReactiveRestClient.create() method can be used to obtain a ReactiveRestClient
implementation backed by the defined WebClient bean definition

@ If more than one ReactiveRestClientFactory is available, the SpringReactiveRestClient class
name can be specified to ensure that a SpringReactiveRestClient type is obtained as a
ReactiveRest(lient implementation

holon-core.html#SpringContextScope

	Holon Platform Project Reactor integration Module - Reference manual
	Table of Contents
	1. Introduction
	1.1. Sources and contributions

	2. Obtaining the artifacts
	2.1. Using the Platform BOM

	3. Reactive Datastore
	4. Reactive RestClient
	4.1. Obtain a ReactiveRestClient instance
	4.2. Configure defaults
	4.3. Build and configure a request
	4.4. Invoke the request and obtain a response
	4.5. Request entity
	4.6. Response type
	4.7. Response entity
	4.8. Specific request invocation methods
	4.9. RestClient API invocation methods reference
	4.10. Property and PropertyBox support

	5. ReactiveRestClient implementation using the Spring WebClient API

